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A numerical method for solving the coupled vorticity-stream function equations in one 
dimension with an exact noniterative determination of the vorticity boundary values is 
presented. The one-dimensional form considered can represent the Fourier modes of a two- 
dimensional problem. The equations are separated by replacing the derivative specifications 
for the stream function at the boundary points with equivalent conditions of an integral type 
for the vorticity. A spectral approximation by means of Chebyshev polynomials is considered. 
The numerical properties of the algorithm are investigated against a few analytical examples 
which demonstrate the accuracy of the proposed method. 

1. INTRODUCTION 

The method of the truncated series expansion in orthogonal functions [ I ] has been 
widely used to obtain approximate solutions of the Navier-Stokes equations for 
viscous incompressible flows. The presence of no-slip boundary conditions, however, 
causes special difficulties which have limited so far the applications of Galerkin and 
collocation methods mainly to problems belonging to the following classes: turbulent 
flows with periodic boundary conditions [2-41; plane or axisymmetric flows in which 
no-slip conditions are prescribed only on two opposite sides of the computational 
domain [5-g]; and three-dimensional flows in plane channels with periodic 
conditions in directions parallel to the planes and no-slip conditions on the planes 
[ 10-131. 

In the case of the vorticity-stream function equations, the no-slip conditions are 
troublesome since they imply the boundary specification of both the stream function 
and its normal derivative but none for the vorticity. The expansion method is thus 
employed to represent the dependence on only one spatial variable, whereas finite 
differences are typically used to discretize the spatial variable involved by the no-slip 
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boundary conditions [5-91. On the other hand, a formulation of the continuum 
problem is possible in which the above difficulty is circumvented by introducing 
conditions of an integral character for the vorticity. Conditions of this type have been 
successfully employed in one-dimensional form using finite differences (see, e.g., [9] 
and the references therein) and in two-dimensional form using both finite differences 
[ 141 and finite elements [ 151. Since expansion or spectral methods provide approx- 
imations of a global character, the use of exact integral conditions for the vorticity is 
expected to be especially appropriate for discretization methods of this type. It seems 
therefore worthwhile to investigate the applicability of the integral conditions to the 
spectral solution of the vorticity-stream function equations. Before addressing the 
fully two-dimensional equations with no-slip conditions prescribed on the entire 
boundary, it seems also convenient to consider the case of one-dimensional equations 
such as those governing the vorticity and stream function coefficients of a 
Fourier mode of a problem in two dimensions. In this note a direct (noniterative) 
algorithm is described for solving Chebyshev approximation to the pair of ordinary 
differential equations of this type which are coupled together by the double 
specification on the stream function. By virtue of the (one-dimensional) integral 
conditions for the vorticity, the equations typical of stationary or evolution problems 
are written in a factorized form. Two methods for computing the relevant quantities 
allowing such a splitting are considered: the first method is an adaptation to the 
present case of the formulation proposed by Glowinski and Pironneau for the bihar- 
manic problem in two dimensions [ 161; the second approach is based on the 
influence matrix method employed by Kleiser and Schumann in the calculation of 
three-dimensional plane channel flows by means of the primitive variables [ 12, 131. 
The problem of evaluating integrals of threefold products of Chebyshev polynomials 
is also considered. The integrals provide the interaction coefficients which are 
required in the iterative solution of the nonlinear Navier-Stokes equations by means 
of the proposed algorithm. 

2. BASIC EQUATIONS 

Let us consider the linear system of two second-order ordinary differential 
equations 

(2.1) 

Dyl= EC, (2.2) 

where c and w  are the unknown variables, y is a constant, E = E(X) and u = c(x) are 
given functions defined on the integration interval [x, , x,]. In Eqs. (2.1~(2.2) D is a 
second-order differential operator defined by 

Lb=--~“+up’+v~,, (2.3) 
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where u and u are given constants and the prime denotes the derivative with respect 
to x. Equations of this type are encountered when the method of series expansions is 
employed in the solution of the Navier-Stokes equations for plane or axymmetric 
viscous flows in terms of the vorticity and stream function variables [ 1). The depen- 
dence on one of the two spatial variables is represented by a truncated series of 
suitable orthogonal polynomials and a nonlinear system of coupled differential 
equations is obtained for the expansion coefficients which depend on the second 
spatial variable. In the case of stationary problems the equations are ordinary 
differential equations, whereas in time-dependent problems a system of partial 
differential equations with two independent variables is obtained. The latter, after the 
equations are discretized in time by finite differences, gives rise to a system of 
ordinary differential equations at each time level. In both cases, the solution of the 
resulting nonlinear system can be calculated iteratively by solving a finite number of 
pairs of linear second-order differential equations for the coefficients < and v in the 
series expansions of the vorticity and stream functions fields. The equations to be 
solved have the form given in Eqs. (2.1)-(2.3) with possibly additional nonconstant- 
coefficient terms in Eq. (2.1) coming from the nonlinear part of the vorticity transport 
equation (see Section 7.2). In stationary problems y = 0, whereas in transient 
problems, typically, y = Re/dt. Furthermore, using Cartesian coordinates E(X) = 1, 
whereas using a stretched radial variable for cylindrical or spherical domains 
E(X) = ezx. 

As far as the conditions for these equations are concerned, the prescription of both 
components of the velocity at the boundary originates specifications for both the 
stream function and its derivative at xi and x2, so that Eqs. (2.1~(2.2) are typically 
supplemented by the boundary conditions 

v4x,> = a,, I= 1, 2, (2.4) 

v’(x,> = b, 3 I= 1,2, (2.5) 

where a, and b,, I = 1,2, are specified from the normal and tangential components of 
the velocity on the boundary. 

3. SPLITTING OF THE EQUATIONS 

The simultaneous specification of IJ and w’ at each boundary point introduces a 
coupling betyeen the linear equations (2.1) and (2.2) for [ and t,u, respectively. It is 
possible, however, to obtain two independent conditions for the vorticity, and 
henceforth a complete splitting of the equations, by means of the simple Green’s 
identity in one dimension given by 
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Here Dt is the operator adjoint to D defined by Eq. (2.3), namely, 

D+rpr-rp”-uqf+vcp. (3.2) 

Notice that D is self-adjoint if and only if u = 0. From Green’s identity (3.1) it 
follows that EC = DI,u, with I = a, and @(xl) = b,, if and only if C satisfies the two 
integral conditions 

i 
x2 @q, dx = -[bv, - a(~; + uy,)];: = c/, (3.3) 
x1 

where q,, I = 1, 2, are such that 

D+q,=O, ?,t4 = 4,7 m= 1,2. (3.4) 

In Eq. (3.3) b = b(x,) E b, and a = a(~,) = a,; furthermore, in Eq. (3.4) a,,,, is the 
Kronecker delta. The problem given by Eqs. (2.1)-(2.4) can be restated as a system 
of two split ordinary differential equations 

DC + y&C = o, 
I 

x2 
4v, dx = c/, I= 1,2; (3.5) 

XI 

Dv = 4, v(x,) = a, 3 1= 1,2. (3.6) 

Each is supplemented by its own conditions, the former by integral conditions and 
the latter by conditions of the usual boundary-value type. 

If the vorticity or its derivative is specified at one of the end points, say x, , there is 
only one integral condition on 4. In this case, the function q to be used in the integral 
condition satisfies the same equation and the same condition at xz valid for the 
function q2, namely, 

D+q=O, ?(Xz) = 1. (3.7) 

As far as the condition at x, is concerned, we have 

r(x,)=O or v’tx,) + U?(X,> = 0 (3.7’) 

according to whether the boundary condition specified at x, for w  is I&,) or I$(x,), 
respectively. 

4. DECOMPOSITION SCHEME FOR THE INTEGRALLY CONDITIONED VORTICITY 

EQUATION 

To simplify the notation, let us introduce the linear operator E = E(x) G D + y&(x) 
so that the vorticity equation (3.5) can be rewritten in the form 

EC = u, 
5 

X2 @,I, dx = c,. (4.1) 
XI 
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Henceforth we will omit the specification I = 1, 2 for simplicity. The solution of the 
integrally conditioned vorticity equation (4.1) can be expressed in the form 

C=Co+a,L+a2L, (4.2) 

where &,,, m = 1, 2, and [,, are the solutions of the problems 

EC,,, = 0, L(x,) = 4d 3 (4.3) 

and 

respectively. Thus a1 and a2 are the values of the vorticity at the end points x1 and 
x2. By imposing that [ satisfies the integral conditions, we find that the two- 
component vector a - {a,, a?} is the solution of the linear system 

Au=& 

where the matrix A and the vector B are defined by the relationships 

(4.5) 

A [,,, = I x2 4, ‘I/ dx, 
Xl 

I,m= 1,2, (4.6) 

P, = - jx2 4,j 9, dx + c/r 
XI 

I= 1,2. (4.7) 

By virtue of Green’s identity (3.1), matrix A is symmetric if and only if u = 0, i.e., if 
and only if D is self-adjoint. In the case u = u = 0 the present formulation becomes 
the one-dimensional equivalent of the split formulation for the biharmonic equation 
[141* 

5. GLOWINSKI-PIRONNEAU METHOD 

The problem defined by Eqs. (2.1)-(2.2) supplemented and coupled by conditions 
(2.4~(2.5) has been transformed into a cascade of independent problems (4.3), (4.4), 
(4.5), and (3.6) to be solved in sequence. However, instead of evaluating A and p 
directly through Eqs. (4.6) and (4.7), it is computationally more convenient to resort 
to a different characterization of these quantities which does not require to calculate 
the functions ‘I,. Such a method results from adapting the general formulation 
proposed by Glowinski and Pironneau for the direct solution of the biharmonic 
equation [ 161 to the present case of nonsymmetric one-dimensional equations. In 
place of the functions r,,,, m = 1, 2, solutions of problem (3.4), one introduces the 
functions W, = w,(x), m =. 1,2, defined such that 

w,,,(x) = arbitrary, x, <X(X2, ~A-%) = 4d. (5.1) 
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Then A is calculated from the functions [,,, and lm, m = 1, 2, which are the solutions 
of the equations 

EC, = 0, Ln(xJ = 4n, 7 (5.2) 

Dw,,, = d,,,, Wmc4 = 0. (5.3) 

By virtue of Green’s identity (3.1$, it is possible to obtain from Eq. (4.6) 

A,, = I 1; [M?l - w:, - w,)w - w:,w;1 dr* 

Similarly, from Eq. (4.7), B can be obtained from 

(5.4) 

EL, = (J, Mx,) = 09 (5.5) 

Dwo = 4o > w&J = a/ 3 (5.6) 

p, = - jx2 [(&Co - uly; - uy/,)w, - l&w;] dx - [bw,]$ (5.7) 
XI 

Once the vorticity boundary values a, and a, have been obtained from the linear 
system 

Aa=p (5.8) 

the solution of the original problem is obtained from the equations 

E<=a, K%) = a/, (5.9) 

Dv = 4, W(Xr> = a,. (5.10) 

Notice that, by exploiting the arbitrariness of W, for x, < x < x2, the functions w,, 
m = 1, 2, can be generated whenever required and need not be stored. 

6. INFLUENCE MATRIX METHOD 

An alternative method for evaluating A and B is provided by the influence (or 
capacitance) matrix method, which has been employed by Kleiser and Schumann to 
solve the similar problem of missing boundary conditions for the pressure variable in 
incompressible flows [ 12-131. By exploiting the linearity of Eqs. (2.1)-(2.2), one can 
expand the solution ([, IJ/) in the form 

(6.1) 

where (Co, IJI,J and ([,, w,), m = 1, 2, are the solutions of problems (5.5~(5.6) and 
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(5.2)-(5.3), respectively. By imposing the satisfaction of the derivative boundary 
conditions #(x,) = b,, I = 1, 2, the linear system Aa = p for a F (a,, aI) is obtained 
where A and p are defined by 

A,, = wL(xA (6.2) 

P, = --wlxx,) + b, * (6.3) 

These expressions are much simpler than the corresponding expressions of the 
Glowinski-Pironneau method but they require the evaluation of pointwise derivatives, 
and this operation can give rise to numerical inaccuracies. 

7. CHEBYSHEV APPROXIMATION 

7.1 Vorticity-Stream Function Equations 

The typical c-w equations to be solved in the algorithm discussed so far are of the 
form 

4” + 246’ + UC + y&c = c7, Ctx,) = 4, 

-w” + uy’ + VW = El, w(x,> = aI. 

(7.1) 

(7.2) 

Let us assume that x, = -1 and x2 = 1. We expand 4 and w  in a truncated series of 
Chebyshev polynomials 7’,(x) = cos [n cos - l(x)] in the respective forms 

and v/(x) = $ v, T”(X). 
n=O 

(7.3) 

The discrete form of the vorticity equations and boundary conditions (7.1) is 
provided by the tau method [ 17-181 expressed by 

-p + up + I$, + y -f E,Jp = (Jn, O<n<N-2, (7.4a) 
p=o 

,fo t-K, = 4 7 (7.4b) 

where we use the notation qc’ for the coefficients of the ith derivative of a Chebyshev 
series p(x) with coefficients p,,. The matrix E,, in Eq. (7.4a) is defined by 

(7.4c) 
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where c, = 2 and c, = 1, n > 1. Similarly, the tau approximation of problem (7.2) is 

N 

-y/(*’ + my(‘) + uy/ 7 r 
n ” ” L %PCP, O<n<N-2, (7.5a) 

p=o 
(7Sb) 

The linear system of the vorticity equations (7.4) has a matrix of coefficients which is 
full if y # 0. The matrix of the coefficients for the stream function equations (7.5) has 
always nonzero entries only in the upper triangle and in the two first lower 
codiagonals. Due to the presence of the coefficients of the first derivative this matrix 
cannot be transformed to a nearly pentadiagonal form by means of the Haidvogel 
algorithm [ 191. 

7.2 Nonconstant Coeflcient Terms 

In typical fluid dynamic applications, the vorticity equation (7.1) contains 
additional terms with nonconstant coefficients which originate from the nonlinearities 
of the vorticity transport equation. In such cases, the operator E of the vorticity 
equation is redefined as 

a = P + Y&(X)] c + f(x) C’ + g(x) 5 t h’(x) (I, (7.6) 

where f, g, and h are assumed to be known functions. If they are expanded in 
Chebyshev truncated series and their Chebyshev coefficients are known, the presence 
of the new terms can be taken into account by adding to the left-hand side of 
Eq. (7.4a) the quantity 

-1 N 

pzo CP qio (Lnq~fs + *mm g, + Lnpqhq), 

where 

*npq = I 
+’ T,(x) T,(x) T,(x) dx 
-1 (1 - x2)“* 

(7.8) 

and 

L nP4 = I 
+ ’ T,(x) T,(x) T;(x) dx 

(1 -x*)v* * (7.9) 
-1 

Using well-known results [ 17, p. 521, the integrals are found to be 

*npq = wktfv”,P+q + 4,,P-,,I. (7.10) 
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As far as the integrals Lnp4 are concerned, by means of known results we find, in 
terms of the function U,(cos 19) = [sin(n + 1)8]/sin 0 [ 17, p. 531, 

L 4 +’ u 6) 
np? = - 4 11 -1 

q+P+.Ax) dx + j’,’ ~l+“-;*j~,* dx 
(1 -x2)“* 

+’ u 
+ 

I 
q-p+n-1(x> dx + +I Uq-p-n-1(4 dx 

-1 (1 -x2)“* !’ -1 (1 -x*)1’* 1 a 
(7.11) 

The integrals on the right can be evaluated using the results 

I 
+* U”(X) dx=O if n is odd (positive or negative), 
-, (1 -x2)“* 

=7l if n is even and > 0, (7.12) 

Z-n if n is even and < 0. 

We notice that, when the nonconstant coefficient terms are present, &,,, m = 1, 2, and 
henceforth A depend on the functions f, g, and h. 

The two linear systems for the vorticity, Eqs. (7.4) and (7.7), and for the stream 
function, Eqs. (7.5), are solved by the LU decomposition. In the case of the stream 
function equations the matrix has a nearly triangular profile, and therefore the 
algorithm is modified to avoid the calculation in the lower triangle, but for the first 
two lower codiagonals. 

In truly nonlinear problems, a substantial gain in computational efficiency can be 
obtained by evaluating the additional terms explicitly according to the pseudospectral 
technique described in [20]. 

7.3 Vorticity Integral Conditions 

The spectral approximation of the equations for the Glowinski-Pironneau method 
is obtained as follows. The functions w,, m = 1, 2, satisfying Eq. (5.1) are approx- 
imated by the first two Chebyshev polynomials, i.e., 

w,(x)=$(l -x) and w*(x) = i( 1 + x). (7.13) 

In the following we denote by w(x) = w,, + wr x (w,, = f and wr = r 4) either function 
defined in Eq. (7.13). Then, the approximation of the integrals occurring in Eq. (5.4) 
or (5.7) can be written as 

I= j’: [(,cc - uv’ - uw) w - v/‘w’l dx = wo j;: r dx 

+ WI j+lx~dx-(uw,+w,)j+‘t#dx-uw, j_il’xyl’dx, (7.14) 
-1 -1 

where the variable < = EC - VW has been introduced. The integrals can be evaluated in 
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terms of the integrals of Chebyshev polynomials and of Chebyshev coefficients of r 
and w. By means of relationships (A. 1 l), (A.9), and (A. 18) of [ 181, we obtain 

PO = 453 
x4x) = 2 Pn T”(X), Pn=fkd,-, +t,+,h 1 <n<N- 1, (7.15) 

1 
PN=iCN--l N-l’ r 

p=Y+ 1 
(7.16) 

p+nodd 

and 

“, 1 
x@(x)= L - my, + 2 PW, T,(x), 

1 
(7.17) 

n=o Crl p=n+z 
p+neven 

respectively. By evaluating the integral of T,,(x), see [ 17, p. 541, the final expression 
of Eq. (7.14) is 

even ptnodd 

( 

N 

-uw,+ nyn+ 2 \’ PVp 
n p=‘;;+ 2 )I 

2 
gnZ 

(7.18) 

ptneven 

Such an expression can be evaluated efficiently in only O(N) arithmetic operations 
using recurrence relations [ 18, p. 1171. 

7.4 Numerical Tests 

The calculations have been done in double precision on a UNIVAC 1100/80. The 
rate of convergence of Chebyshev approximations to the exact solution of the test 
problems is evaluated in terms of the relative L, error. Thus, the error of the Nth 
approximation (Pi to the function ~1 is defined by 

EN(a)) = 119 - ~Nlt/ll~ll, (7.19) 

where ]I rp ]I2 = 1~’ dx. In all numerical examples the Glowinski-Pironneau methods 
have been used. 

Table I contains the relative error of Chebyshev and finite-difference solutions to 
the problem: u = ex, E = 1, y = 0, u = u = 1, [ = v = ex. We notice the infinite-order 
accuracy of the Chebyshev method as compared to the second-order accuracy of the 
centred difference approximation to Eqs. (5.1~(5.10). In both methods w is evaluated 
with an accuracy greater than [, a result typical of all the approximate calculations 
using the nonprimitive variables. Such a behaviour is confirmed by the numerical 
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solution to the problem: u = cos x, E = 1, y = 0, u = 0, u = -2, -[ = ly = cos x (see 
Table II). An example with the vorticity equation containing the term YE(X) for time- 
dependent problems is considered in Table III. The presence of the additional term 
5ezxc reduces the accuracy of the numerical solution only slightly with respect to the 
corresponding steady-state problem. The results for a problem with a stretched radial 
variable (E(X) = eZX) are shown in Table IV. In Table V we report the solution error 
for a problem with a boundary layer of width 6 = l/100 at x = 1. Notice that, to 
achieve an error < 1 %, N - 30 polynomials are necessary in fair agreement with the 
prediction of the approximation theory N - 3/~Yl’~ [ 18, p. 401. 

Table VI compares the Glowinski-Pironneau method and the influence matrix 
method for evaluating the quantities required to impose the vorticity integral 
conditions. For the considered example, the former method is found to be slightly 

TABLE I 

Comparison of Chebyshev and Finite Difference Approximations” 

N Ed0 E,,,(W) 

Finite differences 
10 

100 

Chebyshev 
4 
6 
8 

10 
12 
14 
16 

0.17 (-1) 
0.11 (-3) 

0.34 (-2) 0.19 (-2 ) 
0.91 (-5) 0.77 (-5) 
0.20 (-7) 0.20 (-7) 
0.40 (-10) 0.39 (-10) 
0.58 (-13) 0.58 (-13) 
0.67 (-16) 0.66 (-16) 
0.17 (-16) 0.84 (-17) 

0.20 (-2) 
0.20 (-4) 

(I --C" t i' t 4 = ex, < = ex, 

-w"ty'+w=& yl=e*. 

TABLE II” 

N EAL;) E,(v) 

4 0.47 (-3) 0.28 (-3) 
6 0.90 (-6) 0.87 (-6) 
8 0.21 (-8) 0.21 (-8) 

10 0.37 (-11) 0.37 (-11) 
12 0.48 (-14) 0.48 (-14) 
14 0.30 (-16) 0.26 (-16) 
16 0.15 (-16) 0.65 (-17) 

a -5” - 25 = cos x, [ = -cos x, 
-yl” - 2yl= [, qJ = +cos x. 



SPECTRAL VORTICITY CONDITIONS 459 

TABLE III 

Equations for Time-Dependent Problems’ 

N 

4 0.71 (-2) 
6 0.10 (-4) 
8 0.20 (-7) 

10 0.39 (-10) 
12 0.57 (-13) 
14 0.68 (-16) 
16 0.30 (-16) 

EdC) E,(v) 

0.18 (-2) 
0.73 (-5) 
0.19 (-7) 
0.39 (-10) 
0.58 (-13) 
0.65 (-16) 
0.50 (-17) 

“-~“+21;+5eZ”<=a(x), [=ex-‘, 
-I/ + 2yl= c, w=,X-‘. 

TABLE IV 

Equations for the Case of a Stretched Radial Variable’ 

N EN EN(v) 

4 0.10 (+1) 0.23 (+O) 
6 0.88 (-2) 0.42 (-2) 
8 0.82 (-4) 0.94 (-4) 

10 0.69 (-6) 0.15 (-5) 
12 0.57 (-8) 0.20 (-7) 
14 0.40 (-10) 0.20 (-9) 
16 0.23 (-12) 0.15 (-11) 

TABLE V 

Resolution of a Boundary Layer” 

N E,(C) E,(v) 

32 0.14 (-1) 0.38 (-1) 
40 0.62 (-3) 0.92 (-3) 
48 0.15 (-4) 0.15 (-4) 
56 0.23 (-6) 0.17 (-6) 
64 0.20 (-8) 0.14 (-8) 

a --r”+5’+r=(-.4*+A+1)eA’X-1’, 
-I#’ + u/’ + I// = [, A = 100; 
c(x) = eAtx-‘), v(x) = e.r’r-“/(-A* + A + 1). 
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TABLE VI 

Comparison of Different Methods 
for Evaluating the Quantities 

for the Vorticity Integral Conditions” 

N E,&) E,(v) 

Glowinski- 
Pironneau method 

4 
6 
8 

10 
12 
14 
16 

Influence 
matrix method 

4 
6 
8 

10 

12 
14 
16 

0.34 (-2) 0.19 (-2) 
0.91 (-5) 0.77 (-5) 
0.20 (-7) 0.20 (-7) 
0.40 (-10) 0.39 (-10) 
0.58 (-13) 0.58 (-13) 
0.67 (-16) 0.66 (-16) 
0.61 (-17) 0.53 (-17) 

0.12 (-1) 0.94 (-3) 
0.52 (-4) 0.95 (-5) 
0.13 (-6) 0.22 (-7) 
0.26 (-9) 0.42 (-10) 
0.38 (-12) 0.63 (-13) 
0.41 (-15) 0.71 (-16) 
0.35 (-16) 0.40 (-17) 

TABLE VII 

Vorticity Equation with Nonconstant Coefficients” 

Edi) 

Oy= 1, u=ff=l, E(X) = t+, 

f(x) = sin 3x, g(x) = sin 2x, h(x)‘= sin x, 
c(x) = exe’, y(x) = -e3’-‘/5. 
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TABLE VIII 

Stream Function Containing Components 
Which Are Solutions of the Homogeneous Equation” 

N E,v(i) E,(v) 

4 0.29 (-1) 
6 0.12 (-3) 
8 0.32 (-6) 

10 0.78 (-9) 
12 0.18 (-11) 
14 0.36 (-14) 
16 0.27 (-16) 

0.27 (-2) 
0.25 (-4) 
0.17 (-6) 
0.86 (-9) 
0.32 (-11) 
0.96 (-14) 
0.22 (-16) 

a 4” t i’ t i = u(x), 
-W”tY’tyl=G 

y(x) = exm’ f  e”“*+” + eA2(xm”, A,,, = (1 f  \/3)/2. 

more accurate, which means that A and p are evaluated more accurately by the 
integral expressions (5.4) and (5.7) than by the local (pointwise) expressions (6.2) and 
(6.3). In Table VII we give the numerical results for a test problem in which the 
vorticity equation contains terms with nonconstant coefficients. It turns out that the 
presence of such additional terms reduces slightly the accuracy of only [ with respect 
to the case with f = g = h = 0 (cf. Table IV). Table VIII gives the error for a 
problem such that w  contains also component solutions of the homogeneous equation 
DI,Y = 0 associated to Dty = C. By comparing with the results of Table VI, we see that 
the accuracy of both [ and v is affected. In Table IX we consider the same test 
problem of Table VI but modified by the specification of the vorticity at x = - 1. The 
comparison indicates that the global accuracy for problems with only one or two 

TABLE IX 

Vorticity Integral Condition 
at Only One Boundary Point” 

N E,di) E,(v) 

4 0.19 (-2) 
6 0.74 (-5) 
8 0.20 (-7) 

10 0.39 (-10) 
12 0.58 (-13) 
14 0.65 (-16) 
16 0.64 (-17) 

0.17 (-2) 
0.76 (-5) 
0.20 (-7) 
0.39 (-10) 
0.58 (-13) 
0.65 (-16) 
0.68 (-17) 

a -C”+C+[=exm’, [(-l)=e-‘, $(+l)= 1, 
-w”+w’tw=L y/(--l) = em*, w(+l) = 1. 
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TABLE X 

Nonlinear Equations” 

N E,&) E,(Y) 

Number of 
iterations 

6 0.97 (-5) 0.77 (-5) 5 
8 0.21 (-7) 0.20 (-7) 6 

10 0.40 (-10) 0.35 (-10) 8 
12 0.59 (-13) 0.58 (-13) 10 
14 0.67 (-17) 0.66 (-16) 11 
16 0.17 (-16) 0.65 (-17) 12 

vorticity integral conditions are almost identical. The last example is the nonlinear 
system 

with u = u = 1 and exact solution t; = w  = ex- ‘. The simple iterative scheme defined 
by v/O = 0, L(t#-‘)c = u, Dty’= <‘, i= 1, 2,..., is employed. The iteration is 
terminated when EN(ci) < E,,,(c) and EN($) < E,,,(W). The error and the number of 
iterations given in Table X show that the number of iterations to obtain a given 
accuracy is independent of the resolution N. 

8. CONCLUSIONS 

A direct algorithm for solving Chebyshev approximations to the vorticity-stream 
function equations has been presented. The method determines noniteratively the 
vorticity boundary values that make the no-slip conditions exactly satisfied. This is 
accomplished by solving four linear systems of two uncoupled second-order 
differential equations similar to the original c-w equations, plus an additional linear 
system of two algebraic equations with two unknowns. Some test calculations have 
demonstrated the accuracy and the effectiveness of the method. The algorithm can be 
employed in conjuction with the truncated series expansion method for calculating 
two-dimensional viscous flows with no-slip conditions prescribed on only two 
opposite sides of the computational domain. The present approach can also be 
generalized to solve the biharmonic equation in a rectangular two-dimensional 
domain as a system of two Poisson equations. By using a double expansion in 
Chebyshev polynomials and employing a direct spectral solver for the Poisson 
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equation with Dirichlet boundary conditions [21], one obtains a linear problem 
similar to Eq. (4.5) with 2(N + M + 2) unknowns, N and A4 being the number of 
Chebyshev polynomials for the expansions in the two spatial directions. 
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